Amazon cover image
      Image from Amazon.com
      Image from Google Jackets

      Biodegradative Bacteria [electronic resource] : How Bacteria Degrade, Survive, Adapt, and Evolve / edited by Hideaki Nojiri, Masataka Tsuda, Masao Fukuda, Yoichi Kamagata.

      Contributor(s): Material type: TextTextPublisher: Tokyo : Springer Japan : Imprint: Springer, 2014Description: VIII, 358 p. 79 illus., 22 illus. in color. online resourceContent type:
      • text
      Media type:
      • computer
      Carrier type:
      • online resource
      ISBN:
      • 9784431545200
      Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
      • 579.17 23
      LOC classification:
      • QR100-130
      Online resources:
      Contents:
      Part 1 Genetic and genomic systems -- 1 Rhodococcus multiple-enzyme and parallel-degradation system for aromatic compounds -- 2 Appearance and evolution of gamma-hexachlorocyclohexane-degrading bacteria -- 3 Diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degradative genes and degrading bacteria -- 4 Genetic system of organohalide-respiring bacteria -- 5 Mobile catabolic genetic elements in pseudomonads -- 6 Adaptation to xenobiotics and toxic compounds by Cupriavidus and Ralstonia with special reference to Cupriavidus metallidurans CH34 and mobile genetic elements -- 7 Conjugative elements: Host chromosome function modifiers -- Part 2 Enzyme systems -- 8 On-line monitoring of biodegradation processes using enzymatic biosensors -- 9 Structure and function of aromatic-ring hydroxylating dioxygenase system -- 10 The protocatechuate 4,5-cleavage pathway: Overview and new findings -- 11 Toluene tolerance systems in Pseudomonas -- 12 Diversity and evolution of aromatic degradation pathway enzymes in an activated sludge -- Part 3 Bacterial behavior in natural environmental systems -- 13 Syntrophic interactions in biodegradative consortia -- 14 Strategies to reveal genomic function in natural soil systems -- 15 Monitoring microbial community dynamics to evaluate bioremediation -- 16 Selective stimulation of aromatic compound degradation by the indigenous marine bacterium Cycloclasticus for bioremediation of oil spills in the marine environment -- 17 Biofilm as a multicellular bacterial system -- BM Index.
      In: Springer eBooksSummary: Biodegradative Bacteria highlights the novel nature of bacterial cell functions in the field of biodegradation by putting them into three parts: (1) Genetic and genomic systems, (2) Degradative enzyme systems, and (3) Bacterial behavior in natural environmental systems. The first part of the book includes cell functions as degradative machinery, genome systems for effective degradation, and the evolution of degradative systems by mobile genetic elements. The second part deals with the structure, function, evolution, diversity, and application of degradative and related enzymes. The third part presents cell or genomic behaviors of biodegradative bacteria in natural ecosystems. Bacterial metabolic capacity, which plays an important role in the global material cycle, contributes significantly to the buffering capacity for the huge and unintended release of various chemicals. Recently, however, the prosperity and globalization of material civilization has led not only to severe local contamination by hazardous chemicals, but also to continuous increment of contaminant concentrations worldwide. To solve such urgent global issues, bacterial functions that are involved in biodegradation of hazardous chemicals have been analyzed. The term “biodegradative bacteria” refers to those bacteria that have the ability to degrade such xenobiotic (man-made) and/or hazardous chemicals. Analyses of biodegradative bacteria include diverse areas of study, such as genetics, enzymology, genomics, cell physiology, ecology, and evolutionary biology. In other words, the targets investigated in research on biodegradative bacteria include single molecules, single cell systems, bacterial consortia (interaction with surrounding microorganisms), and interaction with surrounding biotic and abiotic materials. Such complexity makes the research on biodegradative bacteria difficult but quite interesting.                                                      .
      Tags from this library: No tags from this library for this title. Log in to add tags.
      Star ratings
          Average rating: 0.0 (0 votes)
      Holdings
      Item type Current library Call number URL Status Notes Date due Barcode
      e-Books e-Books SARVAJNA LIBRARY, UHS, BAGALKOT Link to resource Available Click on the URL to access eBook

      Part 1 Genetic and genomic systems -- 1 Rhodococcus multiple-enzyme and parallel-degradation system for aromatic compounds -- 2 Appearance and evolution of gamma-hexachlorocyclohexane-degrading bacteria -- 3 Diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degradative genes and degrading bacteria -- 4 Genetic system of organohalide-respiring bacteria -- 5 Mobile catabolic genetic elements in pseudomonads -- 6 Adaptation to xenobiotics and toxic compounds by Cupriavidus and Ralstonia with special reference to Cupriavidus metallidurans CH34 and mobile genetic elements -- 7 Conjugative elements: Host chromosome function modifiers -- Part 2 Enzyme systems -- 8 On-line monitoring of biodegradation processes using enzymatic biosensors -- 9 Structure and function of aromatic-ring hydroxylating dioxygenase system -- 10 The protocatechuate 4,5-cleavage pathway: Overview and new findings -- 11 Toluene tolerance systems in Pseudomonas -- 12 Diversity and evolution of aromatic degradation pathway enzymes in an activated sludge -- Part 3 Bacterial behavior in natural environmental systems -- 13 Syntrophic interactions in biodegradative consortia -- 14 Strategies to reveal genomic function in natural soil systems -- 15 Monitoring microbial community dynamics to evaluate bioremediation -- 16 Selective stimulation of aromatic compound degradation by the indigenous marine bacterium Cycloclasticus for bioremediation of oil spills in the marine environment -- 17 Biofilm as a multicellular bacterial system -- BM Index.

      Biodegradative Bacteria highlights the novel nature of bacterial cell functions in the field of biodegradation by putting them into three parts: (1) Genetic and genomic systems, (2) Degradative enzyme systems, and (3) Bacterial behavior in natural environmental systems. The first part of the book includes cell functions as degradative machinery, genome systems for effective degradation, and the evolution of degradative systems by mobile genetic elements. The second part deals with the structure, function, evolution, diversity, and application of degradative and related enzymes. The third part presents cell or genomic behaviors of biodegradative bacteria in natural ecosystems. Bacterial metabolic capacity, which plays an important role in the global material cycle, contributes significantly to the buffering capacity for the huge and unintended release of various chemicals. Recently, however, the prosperity and globalization of material civilization has led not only to severe local contamination by hazardous chemicals, but also to continuous increment of contaminant concentrations worldwide. To solve such urgent global issues, bacterial functions that are involved in biodegradation of hazardous chemicals have been analyzed. The term “biodegradative bacteria” refers to those bacteria that have the ability to degrade such xenobiotic (man-made) and/or hazardous chemicals. Analyses of biodegradative bacteria include diverse areas of study, such as genetics, enzymology, genomics, cell physiology, ecology, and evolutionary biology. In other words, the targets investigated in research on biodegradative bacteria include single molecules, single cell systems, bacterial consortia (interaction with surrounding microorganisms), and interaction with surrounding biotic and abiotic materials. Such complexity makes the research on biodegradative bacteria difficult but quite interesting.                                                      .

      There are no comments on this title.

      to post a comment.
      External Imp. Links

      UHSB || ICAR || IDEAL: A Union Catalog of NARS Libraries || KrushiKosh (Digital Library) || Kanaja (ಕಣಜ – ಕನ್ನಡ ಜ್ಞಾನಕೋಶ) || Karnataka Gazetteer || ASRB || Employment News || ಉದ್ಯೋಗ ಮಾಹಿತಿ || || Karnataka Digital Public Library ||


      For more Information please contact Librarian @ Sarvajna Library, UHS, Bagalkot OR Dr. Gireesh A Ganjihal Assistant Librarian
      "Healthy Soils for a Healthy Life"

      page counter